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Abstract
Recent experiments on cells treated with hydrophobic ions showed that the
mobile charges adsorbed to the plasma membrane contributed significantly to
the low-frequency dielectric behaviour of cells. Due to the different transport
properties of the mobile ions along the radial and tangential directions within
the membrane, there is a dielectric anisotropy in the plasma membrane. In
this work, we adopted a single-shell spherical cell model with an intrinsic
dispersion in the membrane, which can be isotropic or anisotropic. We
developed a dielectric dispersion spectral representation (DDSR) and expressed
the Clausius–Mossotti factor in terms of a series of sub-dispersions. This
representation enables us to assess the effects of the permittivities and
conductivities in cells. We further assessed the effects of a dielectric anisotropy
on the dispersion spectrum in the DDSR. To this end, we interpreted the results
as a change in the dispersion strength, as well as a shift of the characteristic
frequency. Moreover, the changes are indeed small and the weak-anisotropy
expansion is justified.

1. Introduction

Biological cells can be modelled as conductive spheres (cytosol) with a thin insulating outer
shell (membrane), assuming the shell is an isotropic, non-dispersive dielectric with conductive
losses. When a biological cell is exposed to an applied electric field, a dipole moment is
induced in it. The interaction of the dipole moment of biological cells with the applied fields
has resulted in a wide range of practical applications from manipulation and trapping to the
separation of biological cells [1].

The Clausius–Mossotti (CM) factor determines the polarization of a biological particle
in a surrounding medium, and is a measure of the dielectric contrast between the particle
and the medium. The CM factor is important in biophysical research because it is closely
related to the alternating current (ac) electrokinetic behaviour of biological cells, namely,
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dielectrophoresis [2], electrorotation [3], electro-orientation [4], electrofusion [5], as well as
electrodeformation [6]. Any change in the cell’s properties such as the mobile charges (in
the membrane), or particle shape, as well as the variation of medium conductivity or medium
permittivity, will change the CM factor, which is in turn reflected in the ac electrokinetic spectra.
These spectra show characteristic frequency-dependent changes amongst other complicated
features [7–16].

In this work, we will establish a dielectric dispersion spectral representation (DDSR) for
the single-shell spherical cell model with an intrinsic dielectric dispersion in the shell. While
the DDSR was proposed earlier by Lei et al [17] and further elaborated by Gao et al [18]
for cell models without shells, the single-shell model has been widely used to mimic a living
biological cell as a homogeneous, nondispersive spherical particle surrounded by a thin shell
corresponding to the plasma membrane.

However, complications arise if there exists a dielectric anisotropy in the plasma
membrane, due to the different transport properties of the mobile ions along the radial and
tangential directions within the membrane [8]. We will access the effects of the dielectric
anisotropy on the dispersion spectrum, again in the general framework of a DDSR.

The DDSR enables us to express the CM factor in terms of a series of sub-dispersions,
each of which with analytic expressions for the dispersion strengths and their corresponding
characteristic frequencies expressed in terms of the various parameters of the cell model [17–
19]. It is known that the CM factor of a colloidal spherical particle can be expressed in terms
of a series of sub-dispersions by using various techniques [20], like the one in [19]. In this
work, we will adopt a somewhat different approach through the DDSR.

The paper is organized as follows. In the next section, we review the DDSR for the CM
factor of an unshelled spherical cell model [17]. We express the dispersion strength and the
characteristic frequency of the CM factor in terms of the parameters of the cell model. Then
an intrinsic dielectric dispersion is included in the cell [18]. In section 3, we analyse the
single-shell model with an intrinsic dielectric dispersion in the shell. We apply the DDSR
to the CM factor to obtain analytic expressions for the dispersion strengths and characteristic
frequencies. These expressions enable us to assess the influence of various model parameters on
the electrokinetics of cells. More precisely, we examine the influence of the permittivities and
conductivities of the external medium and the cytosol on the dispersion spectra. In section 4,
a weak-anisotropy expansion is employed to discuss the effect of a dielectric anisotropy in the
membrane. A discussion and conclusion will be given.

2. The dielectric dispersion spectral representation

In this section, we review the dielectric dispersion spectral representation (DDSR) for
the Clausius–Mossotti (CM) factor of an unshelled spherical cell model [17]. A similar
representation was attempted by Foster et al [19]. The dipole moment of a single sphere
in a uniform electric field [21] is

p = εe R3U E0, (1)

where εe is the permittivity of the external medium, R the radius of particle, E0 the electric
field strength, and U is the CM factor due to the dielectric discontinuity

U = εi − εe

εi + 2εe
, (2)

where εi is the permittivity of particle. In ac applied fields, the real constants εe and εi are
replaced by their complex counterparts [1]

εe → ε∗
e = εe +

σe

iω
, (3)
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Table 1. The parameters used for isotropic mobile charge model calculations [8].

Parameter Symbol Numerical value

Cell radius Re 9.5 µm
Membrane thickness d 8 nm
External permittivity εe 80ε0

External conductivity σe 1 mS m−1

Cytosolic permittivity εi 120ε0

Cytosolic conductivity σi 0.25 S m−1

Membrane permittivity εm 7.23ε0

Membrane conductivity σm 4 × 10−7 S m−1

Mobile charge concentration Nt 20 nmol m−2

Translocation rate ki 104 s−1

εi → ε∗
i = εi +

σi

iω
, (4)

where i = √−1, and σi and σe are conductivities. Then the CM factor becomes complex:

U → U∗ = ε∗
i − ε∗

e

ε∗
i + 2ε∗

e
= U +

B0

1 + A1w
, (5)

where w = iω,

B0 = σi − σe

σi + 2σe
− εi − εe

εi + 2εe
, A1 = εi + 2εe

σi + 2σe
.

This gives the dielectric relaxation of a single spherical particle

U∗ = U +
�ε1

1 + iω/ω1
, (6)

where the characteristic frequency ω1 and dispersion strength �ε1 are given by

ω1 = A−1
1 = σi + 2σe

εi + 2εe
, (7)

�ε1 = B0 = σi − σe

σi + 2σe
− εi − εe

εi + 2εe
. (8)

Using typical values for the permittivities and the conductivities (see table 1), εe = 80ε0, εi =
120ε0, σe = 10−3 S m−1, and σi = 0.25 S m−1, we obtain ω1 = 108 Hz.

For electrorotation, the angular velocity � of the particle is given by [1]

� = −εe E2
0

2η
Im U∗, (9)

where η is the coefficient of viscosity. When Im U∗ < 0 (Im U∗ > 0) or �ε1 > 0 (�ε1 < 0),
we have a co-field rotation (anti-field rotation).

Then, when an intrinsic dielectric dispersion is included in the cell [18],

ε∗
i = εi +

�εi

1 + iω/ωc
+

σi

iω
, (10)

its corresponding complex CM factor U∗
int can be expressed in the dispersion form as

U∗
int = Uint +

B0 + B1w

1 + A1w + A2w2
= Uint +

2∑
n=1

�εn

1 + iω/ωn
, (11)
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where Uint = (εi − εe)/(εi + 2εe). In equation (11), the characteristic frequency ωn and
dispersion strength �εn are given by

ω1 = 1

2(2εe + εi)
[2σe + σi + (�εi + 2εe + εi)ωc +

√
�], (12)

ω2 = 1

2(2εe + εi)
[2σe + σi + (�εi + 2εe + εi)ωc − √

�], (13)

�ε1 = 3(−εiσeω1 + εeσiω1 + εiσeωc − εeσiωc + �εiεeω1ωc)

(2εe + εi)2ω1(ω1 − ω2)
, (14)

�ε2 = 3(εiσeω2 − εeσiω2 − εiσeωc + εeσiωc − �εiεeω2ωc)

(2εe + εi)2ω2(ω1 − ω2)
, (15)

with � = −4(2εe + εi)(2σe + σi)ωc + [2σe + σi + (�εi + 2εe + εi)ωc]2. It is worth remarking that
there are two dispersion terms in equation (11), one of which (namely, the first term, n = 1) is
due to the dielectric contrast between the cell and the medium, while the other (i.e., the second
term, n = 2) is due to the presence of the intrinsic dispersion inside the cell.

To summarize, our objective here is to establish a dielectric dispersion spectral
representation for the U∗ factor. Generally, U∗ can be written as

U∗ = U +
n∑

k=1

�εk

1 + i ω
ωk

, (16)

where �εk is the dielectric dispersion strengths, and ωk is the characteristic frequencies. The
actual number of terms in the summation depends on the nature of the model. In the next
section, we will consider the single-shell spherical cell model with an intrinsic dispersion. We
will show that the summation consists of four terms corresponding to four sub-dispersions.
We should remark that similar representation has been done, for example, in [19] for these
simple cases. Although different formulae have been obtained, these are similar formulae.
The analytic expressions for the single-shell model with an intrinsic dispersion in the shell will
be the object of the next section.

3. The single-shell spherical model

Following Roth and Dignam [22], the CM factor for a single-shell spherical cell with isotropic,
lossless dielectric membrane is

Uiso = (2εm + εi)(εm − εe)R3
e + (εi − εm)(2εm + εe)R3

i

(2εm + εi)(2εe + εm)R3
e + 2(εi − εm)(εm − εe)R3

i

, (17)

where ε is permittivity and R the radius; the subscripts e, m and i correspond to the external
medium, the membrane and the cytosol, respectively.

The intrinsic dielectric dispersion of the membrane is caused by the presence of mobile
hydrophobic ions within the plasma membrane. It involves ionic diffusion in the diffuse
double layer surrounding the membrane [23]. As stated in Sukhorukov and Zimmerman [7],
the diffusion process can be slow compared to the translocation process within the membrane,
and the intrinsic dispersion is dominated by the translocation of ions through the membrane.
Thus the area specific concentration of the adsorbed ions Nt is related to the dielectric increment
�εm by the following equation:

�εm = Nt F2d

2RT
(18)

where F is Faraday’s constant, d is the membrane thickness, R is the universal gas constant,
T is the temperature, and �εm is one of the factors in the complex membrane permittivity ε∗

m.
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The translocation rate of the adsorbed ions ki is related to the circular frequency of the
membrane dispersion ωd by the following equation:

ωd = 2ki, (19)

and ωd is one of the factors in ε∗
m.

Thus the real constants εe, εm and εi are replaced by their complex counterparts [1]

ε∗
e = εe +

σe

iω
, (20)

ε∗
m = εm +

�εm

1 + iω/ωd
+

σm

iω
, (21)

ε∗
i = εi +

σi

iω
(22)

to give the complex CM factor U∗
iso, where there are in fact four parameters in the membrane

permittivity.
Using Mathematica, the U∗

iso factor can readily be expressed in the dielectric dispersion
spectral representation. The solution consists of a few steps: after calculating the real Uiso

factor, we replace the real permittivities with their complex counterparts, and that gives the
complex U∗

iso factor. To solve for the summation part, assume it is of the form

U∗
iso = Uiso +

B0 + B1w + B2w
2 + B3w

3

1 + A1w + A2w2 + A3w3 + A4w4
(23)

= Uiso +
B0 + B1w + B2w

2 + B3w
3

(1 + w/ω1)(1 + w/ω2)(1 + w/ω3)(1 + w/ω4)
, (24)

where w = iω, and the Ai and Bi are constants. These constants can be expressed in terms of
the permittivities and conductivities of various different regions (as well as the cell radius and
membrane thickness).

By partial fraction, this term can be expressed as a summation of four terms, each of which
takes on the form �εk

1+i ω
ωk

, where �εk and ωk can be solved easily.

For this model, �ε1 in terms of the constants Bi turns out to be

�ε1 = (−B0 + ω1(B1 + ω1(−B2 + B3ω1)))ω2ω3ω4

(ω1 − ω2)(ω1 − ω3)(ω1 − ω4)
. (25)

The rest of the �εk follow by cyclic permutation of the variables, namely, 1 → 2, 2 → 3,
3 → 4, 4 → 1.

To solve for ωk , one must solve the quartic equation

1 + A1w + A2w
2 + A3w

3 + A4w
4 = 0 (26)

with the constants Ai replaced by their numerical values. Then ωk are minus the solutions to
this equation.

The constants Ai and Bi are complicated expressions of the parameters of the model;
therefore it is essential to evaluate their numerical values first before solving for �εk and ωk

in order to simplify the calculations.
We will report the influence of the conductivities on the dispersion spectra in this section.

Using Mathematica, the dielectric dispersion strengths and the characteristic frequencies can
be calculated easily with the parameters incremented individually in turn while the values
of other parameters remain as stated in table 1. The results were tabulated and graphs were
plotted, as shown below.

As is shown in figures 1–3, there are four sub-dispersions: namely, ω1 is the co-field peak
of electrorotation corresponding to the cytosol, ω2 corresponds to the anti-field membrane
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Figure 1. The dispersion strengths (�ε1 · · ·�ε4) and the characteristic frequencies (ω1 · · · ω4)
plotted as a function of the conductivity of the external medium σe.

peak, while ω4 refers to the anti-field mobile charge peak. ω3 shows some trace of the original
mobile charge dispersion. These descriptions are in accord with Sukhorukov and Zimmermann
[7]. �ε3 has a very small magnitude compared with other dielectric dispersion strengths,
of the order 10−6–10−15. Its corresponding characteristic frequency is relatively constant
(ω3 = 20 000 s−1), only changing significantly when the translocation rate of the adsorbed
ions ki (and hence the circular frequency of the membrane dispersion ωd) is varied. Therefore
it is not important, and this is why it did not show up in the previous calculations [7, 8] of the
dispersion spectra.

In figure 1, increasing the medium conductivity σe causes the co-field dielectric dispersion
strength �ε1 to remain roughly constant before starting to decrease at about σe = 0.01 S m−1.
At a higher medium conductivity beyond this value, �ε1 decreases rapidly with the increase
of σe, owing to a significant reduction in the conductivity contrast between the cytosol and
the external medium as the medium conductivity increases. The corresponding characteristic
frequency remains relatively constant despite the slight increase towards the high σe end. On
the other hand, the anti-field peaks show interesting non-monotonic behaviour. At a small
medium conductivity, the membrane peak is not significant, signified by a small �ε2, owing to
a small conductivity contrast between the membrane and the external medium. The increase of
σe causes the anti-field dielectric dispersion strengths �ε2 and �ε4 to swap magnitudes, with
�ε2 decreasing to a minimum while �ε4 increases from a minimum. Their corresponding
characteristic frequencies show a converge–diverge pattern: both of them increase, but with
ω4 increasing faster than ω2 they come to a closest point at about σe = 0.006 S m−1; then
ω2 increases faster than ω4 and their values diverge. This level-repulsion phenomenon is a
general spectral property, common in many physical systems.
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Figure 2. The same as figure 1, but as a function of the conductivity of the cytosol σi . Typical σi
values range from 0.2 to 1 S m−1.

In figure 2, varying the cytosol conductivity σi has the greatest effect on �ε1 and ω1 because
they are related to the cytosol. All other dielectric strengths and characteristic frequencies
remain roughly constant.

In figure 3, varying Nt does not affect the cytosolic factors �ε1 and ω1 significantly.
Increasing Nt causes �ε4 to become more negative, and thus showing more significance,
because it is related to the mobile charges; while �ε2, related to the membrane, increases
towards zero, showing less significance. For their corresponding characteristic frequencies,
ω2 increases while ω4 decreases.

4. Weak-anisotropy expansion

For the anisotropic model, the Uani factor is a non-analytic expression [22]:

Uani = − −R1+2δ
i (εi − δεmr)(εe + εmr + δεmr) + R1+2δ

e (εe − δεmr)(εi + εmr + δεmr)

R1+2δ
i (εi − δεmr)(−2εe + εmr + δεmr) + R1+2δ

e (2εe + δεmr)(εi + εmr + δεmr)
, (27)

where

δ = −1

2
+

√
1

4
+

2εmt

εmr
(28)

and R is the radius, ε is the permittivity; the subscripts e, i, m, r and t represent the external
medium, the cytosol, the membrane, radial direction and tangential direction respectively.

Since δ contains the terms εmt and εmr, which are complex in the anisotropic model, the
Uani factor cannot be expanded in the same way as in the isotropic mobile charge model.
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Figure 3. The same as figure 1, but as a function of the area specific concentration of the adsorbed
ions Nt .

Anisotropy in the membrane occurs when the permittivity in the radial direction is different
from that in the tangential direction, i.e. εmt �= εmr. Therefore we introduce a small correction
term h, so that

εmt = εmr(1 + h). (29)

We found that if the anisotropy is weak, we can expand Uani using Taylor’s series, neglecting
second and higher order terms. The zeroth order term is the same as Uiso, while the first order
term is equivalent to the summation term in the isotropic mobile charge model.

As before, we replace the permittivities with their complex counterparts. ε∗
e and ε∗

i
remain the same, but ε∗

m is split into radial part and tangential part to account for the dielectric
anisotropy:

ε∗
mr = εm +

�ε

1 + iω/ωd
+

σmr

iω
, (30)

ε∗
mt = εm +

σmt

iω
. (31)

The real permittivities εm of the two parts are the same, while their conductivities are different.
Also, there is a dispersion term ( �ε

1+iω/ωd
) in the radial direction but not in the tangential direction.

Assume the first order term is of the form

U∗
ani = U∗

iso +
C0 + C1w + C2w

2 + C3w
3 + C4w

4 + C5w
5 + C6w

6 + C7w
7

1 + D1w + D2w2 + D3w3 + D4w4 + D5w5 + D6w6 + D7w7 + D8w8
(32)

= U∗
iso +

C0 + C1w + C2w
2 + C3w

3 + C4w
4 + C5w

5 + C6w
6 + C7w

7

((1 + w/ω1)(1 + w/ω2)(1 + w/ω3)(1 + w/ω4))2
, (33)

where w = iω and the Cs and Ds are constants.
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Table 2. The parameters used for anisotropic model calculations [8].

Parameter Symbol Numerical value

Cell radius Re 9.5 µm
Membrane thickness d 8 nm
External permittivity εe 80ε0

External conductivity σe 4 mS m−1

Cytosolic permittivity εi 120ε0

Cytosolic conductivity σi 0.25 S m−1

Membrane permittivity εm 7.23ε0

Radial membrane conductivity σmr 4 × 10−7 S m−1

Tangential membrane conductivity σmt 4 × 10−7 S m−1; 0.4 S m−1

Mobile charge concentration Nt 20 nmol m−2

Translocation rate ki 104 s−1

It turns out that the characteristic frequencies remain the same, but because of the
differentiation performed in the Taylor expansion, each frequency is now a repeated root.
Therefore, after doing the partial fraction, the complex U∗

ani factor becomes

U∗
ani = U∗

iso +
m∑

j=1

�ε j

1 + iω
ω j

+
m∑

j=1

�2ε j

(1 + iω
ω j

)2
, (34)

where the two summation terms come from the first order term of the Taylor expansion. To
avoid confusion, it should be remarked that �2ε j does not equal the square of �ε j .

In the anisotropic model, �εks and �2εks turn out to be complicated expressions in terms
of the constants Cs and Ds and the characteristic frequencies ωks. Using the above anisotropic
model, we produced some numerical results in order to access the strength of the anisotropy.
The parameters used are given in table 2. The results are given in table 3 for both equal and
unequal radial and tangential membrane conductivities.

For both cases, the corrections in the dielectric dispersion strengths are much smaller:
of magnitude 10−8 when σmt = σmr = 4 × 10−7 S m−1, and of order 10−3 when σmt =
0.4 S m−1 � σmr in the anisotropic model.

In the weak-anisotropy expansion, the corrections to the DDSR are of the forms
(1 + iω/ω j )

−1 and (1 + iω/ω j )
−2. While the former form can readily be interpreted as a

change in the dispersion strength at ω j , the latter form is quite problematic because it does
not appear as a dispersion form. In fact, the results can be cast into a form �ε′

j/(1 + iω/ω′
j )

to first order in the expansion parameter, where ω′
j is given by ω j(1 − �2ε j/�ε j ). Thus,

we can interpret the result as a dispersion form with a shift in the characteristic frequency.
In view of the positive sign of the ratio �2ε j/�ε j in table 3, there is always a red shift in
the dispersion spectrum, i.e., a shift to a lower frequency due to dielectric anisotropy. The
result also showed that the anisotropic effect is indeed very small, and thus justifies our weak
anisotropic expansion.

5. Discussion and conclusion

Here a few comments are in order. We would like to spell out the advantages and limitations of
the present model, and discuss why it is useful to take anisotropy into consideration. The present
work makes several quantitative predictions which would stimulate further experimental work
on the basic mechanisms of the interaction of hydrophobic ions and other charged molecules
with biological membranes, using ac electrokinetic and related techniques.
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Table 3. Results from the weak anisotropic model calculations.

Solution Symbol Absolute numerical value

Characteristic frequencies ω1 1.05 × 108 Hz
ω2 2.05 × 105 Hz
ω3 2.00 × 104 Hz
ω4 1.04 × 104 Hz

When σmr = σmt = 4 × 10−7 S m−1

Dielectric dispersion strengths �ε1 3.19 × 10−8

�ε2 3.05 × 10−8

�ε3 1.74 × 10−9

�ε4 2.43 × 10−8

�2ε1 2.94 × 10−8

�2ε2 1.29 × 10−7

�2ε3 1.73 × 10−11

�2ε4 1.36 × 10−7

When σmr = 4 × 10−7 S m−1 and σmt = 0.4 S m−1

Dieletric dispersion strengths �ε1 0.0022
�ε2 0.0010
�ε3 1.0 × 10−6

�ε4 0.020
�2ε1 0.0020
�2ε2 0.0081
�2ε3 9.1 × 10−7

�2ε4 0.0087

It is useful to take anisotropy into consideration. The traditional isotropic cell models
were extended to account for a dielectric anisotropy in the plasma membrane introduced
by hydrophobic ions. This work could be of interest to researchers working in the fields of
membrane and cell biophysics, where organic ions are widely used as field-sensitive molecular
probes.

The present model is valid for the low concentration limit where the interaction between
the particles can be neglected. However, we can extend this model to a high concentration
case by using the Maxwell–Garnett approximation (see, for example, [18]), in an attempt to
take into account the many-body (local-field) effect.

In this work, we have considered a single-shell model with a homogeneous cytosol;
realistic cells must be inhomogeneous due to the compartment in the interior of cells. We
can extend our consideration to a single-shell graded cell model to capture the inhomogeneous
nature of the cell interior [24]. In such a model, the cytosol can have a conductivity profile
which varies along the radius of the cell, and we cover the cytosol by an insulating membrane.
A small conductivity-gradient expansion for the DDSR of single-shell graded cell model can
be done, based on the differential effective dipole approximation [24]. Similarly to the weak
anisotropy expansion, we will assess the effects of a conductivity gradient in the cytosol on
the dispersion spectrum.

Since cells (e.g., human erythrocytes) can change from perfect spherical shape to oblate
spheroidal shape by applying a hydrostatic pressure [25], it is also instructive to consider
nonspherical cells [26]. The general framework of the DDSR can be used for this.

In summary, we showed that the Clausius–Mossotti factor of a single-shell spherical
particle can actually be expressed in terms of a series of sub-dispersions by the dielectric
dispersion spectral representation. This representation enables us to assess the influence of
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the permittivities and conductivities in cells, including the properties of the external medium,
membrane and cytosol regions of the cells, without having to analyse the full dispersion
spectrum. The effects of a dielectric anisotropy on the results have been addressed in the
general framework of a DDSR. The results showed that the effects are indeed small and our
small-anisotropy assumption is justified.
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